天问一号拍火星的相机纷歧般:200千米开外明察秋毫

这里是广告

●在距方针200千米开外即可“明察秋毫”

●凭强壮“骨骼”既身轻如燕又稳如泰山

●像拖布定向拖地一样可实现“推扫成像”

前不久,国家航天局发布了“天问一号”传回的首幅火星图像。此图像是“天问一号”高辨别率相机在距离火星约220万千米处拍下的。图中,火星阿茜达利亚平原、克律塞平原、子午高原、斯基亚帕雷利坑以及最长峡谷——水手谷等符号性地貌清晰可见。

图像一发布,就吸引了全世界的目光。这部高辨别率相机,也一度成为人们眼中的“明星”。

高辨别率的奥秘:长焦距离轴光学系统

这部高辨别率相机,能在距离方针265千米处实现0.5米辨别率的光学成像。这就如同站在长春市中心观看沈阳市中心的一台轿车,甚至可以辨别出是三厢车还是两厢车,绝对称得上是“明察秋毫”。具备这一不凡功力,首先要得益于先进的光学系统。

光学系统是相机的核心部门,它能将远处的景物成像在感光元件上,从而实现照相功能。像素辨别率是我们最关注的相机性能指标,暗示照片上的1个像素对应远处被拍摄景物的尺寸。按照几何光学物像关系,辨别尺寸、照相距离(卫星飞行高度)、焦距、像元尺寸等4个参数,构成一个相似三角形的几何关系。从这个关系可以得出,相机辨别率越高,光学系统焦距就越长,相应的镜头口径就越大。

小型光学系统,如常见的消费级单反镜头、手持望远镜等,根基上由光学玻璃制造的透镜组成,其特点是焦距短、辨别率低。由于大尺寸的优质光学玻璃难以制造,且光学玻璃自身力学、热学性能欠佳,容易发生色差,因此长焦距大口径的光学系统根基接纳反射式光学布局。

在反射式光学系统中,透镜功能由反射镜取代。个中,可使光线汇聚的凸透镜由凹面反射镜取代,可使光线发散的凹透镜由凸面反射镜取代。大型天文望远镜以及高辨别率航天相机中,均使用反射式光学系统。

反射式光学系统凭据光轴特性可分为两大类:同轴光学系统和离轴光学系统。

同轴光学系统中,每个反射镜都是旋转对称的。这一特点,使得反射镜的加工难度与光学系统的装调集成难度都相对较小。受限于制造程度,大部门反射式光学系统根基上接纳同轴布局形式。

离轴光学系统中,大部门反射镜没有旋转对称轴,反射镜位置的空间结构更为庞大。这种非对称光学系统的反射镜加工难度与系统装调集成难度都很大。

虽然离轴光学系统实现难度大,但其性能有很多过人之处。最重要的一点就是,在离轴光学系统的成像光路中,任何一个反射镜都不会对其他反射镜造成孔径遮拦,从而使光学系统有效口径降低。

光能量的收集能力决定着光学系统的辨别率。好比,在同轴系统中,次反射镜会对主反射镜造成孔径遮拦;如果反射镜数量增多,造成的遮拦效应也越大。这种感受就像在眼镜中心贴上一片黑色不透光的胶布,不只影响了本应该被眼睛收集的光能量,同时也造成光学系统辨别率下降。具有相同光学口径的离轴光学系统,比同轴光学系统有更强的辨别能力。

“天问一号”高辨别率相机的光学系统,接纳了不具有孔径遮拦的长焦距离轴三反射镜光学系统,由3个具有光焦度的反射镜和一个不具有光焦度的平面反射镜组成。

光学系统焦距拉长,镜头尺寸也随之增长。为了压缩体积尺寸,适应深空探测任务中相机重量资源极为有限的条件,高辨别率相机光学系统中的3个非球面反射镜,接纳了高陡度大偏离量的高次非球面。项目团队克服光学系统设计、加工与检测等重重困难,最终将光学系统主反射镜与次反射镜之间的距离缩小至750毫米以内。这对付焦距为4640毫米、视场角为2°的离轴反射式光学系统,体积尺寸表示极为优秀。

另外,为使光学系统在具有良好成像质量的同时,尽可能担保较为宽松的装配公差,项目团队在光学系统设计过程中,应用了低敏感度光学系统设计办法。

超轻量化与超不变性的诀窍:全碳化

光机布局是相机的“骨骼”,为光学、电子学和热控等系统提供支撑,确保光学系统位置状态的不变。由于空间相机的光学系统极为精密,光学反射镜需要按设计位置高精度安顿,才气确保光学系统良好的成像质量。

火星探测器发射时,对相机的打击震动极大,光机布局需要在剧烈变革的力学环境中,使相机中每个光学元件保持位置不变性,确保每个元件的位置变换在5微米内。这就需要相机的“骨骼”极为强壮,也就是专业上所说的“布局应具有高刚度”。

这里是广告,联系QQ270042204